
Snicket: Query-Driven Distributed Tracing

Jessica Bergq, Fabian Ruffyq, Khanh Nguyenq,
Nicholas Yangq, Taegyun Kimq, Anirudh Sivaramanq,

Ravi Netravali♣, Srinivas Narayana♠
q New York University, ♣ Princeton University, ♠ Rutgers University

ABSTRACT
Increasing application complexity has caused applications to
be refactored into smaller components known as microser-
vices that communicate with each other using RPCs. Dis-
tributed tracing has emerged as an important debugging tool
for such microservice-based applications. Distributed tracing
follows the journey of a user request from its starting point at
the application’s front-end, through RPC calls made by the
front-end to different microservices recursively, all the way
until a response is constructed and sent back to the user. To re-
duce storage costs, distributed tracing systems sample traces
before collecting them for subsequent querying, affecting the
accuracy of queries on the collected traces.

We propose an alternative system, Snicket, that tightly in-
tegrates querying and collection of traces. Snicket takes as
input a database-style streaming query that expresses the anal-
ysis the developer wants to perform on the trace data. This
query is compiled into a distributed collection of microservice
extensions that run as “bumps-in-the-wire,” intercepting RPC
requests and responses as they flow into and out of microser-
vices. This collection of extensions implements the query,
performing early filtering and computation on the traces to re-
duce the amount of stored data in a query-specific manner. We
show that Snicket is expressive in the queries it can support
and can update queries fast enough for interactive use.

ACM Reference Format:
Jessica Berg, Fabian Ruffy, Khanh Nguyen, Nicholas Yang, Taegyun
Kim, Anirudh Sivaraman, Ravi Netravali, Srinivas Narayana. 2021.
Snicket: Query-Driven Distributed Tracing. . In The Twentieth ACM

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotNets’21, November 10-12, 2021, Virtual Event, UK
© 2021 Copyright held by the owner/author(s). Publication rights licensed to
the Association for Computing Machinery.
ACM ISBN 978-1-4503-9087-3/21/11. . . $15.00
https://doi.org/10.1145/3484266.3487393

Workshop on Hot Topics in Networks (HotNets ’21), November 10–
12, 2021, Virtual Event, United Kingdom. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3484266.3487393

1 INTRODUCTION
Growing application complexity has led organizations to de-
compose large web services into a collection of smaller com-
ponents, known as microservices, that communicate with
each other over an RPC interface [6]. When a user issues a
request to a web service (e.g., for the landing page of a social
network), the request is first received by a front-end microser-
vice. The front-end microservice then issues RPCs to internal
microservices, which in turn might call other microservices
recursively to construct a response for the user.

Debugging such microservice-based applications is diffi-
cult because microservices are distributed across multiple
compute nodes. An important debugging tool for such appli-
cations is distributed tracing [5, 23]. Distributed tracing tracks
the flow of an incoming user request through the collection
of traversed microservices and represents the request as a
trace: a tree that captures parent-child relationships between
all RPCs originated by a particular user request along with
some metadata of each RPC (e.g., RPC latency). Distributed
tracing systems [4, 8, 11, 17, 23] capture and persist traces in
a database to permit subsequent querying by developers.

Storing a trace for every user request is prohibitively ex-
pensive. Hence, all existing tracing systems sample traces in
some way. Two sampling strategies are commonly deployed
today. Systems based on head-based sampling [4, 17, 23]
sample user requests for tracing and storage before the re-
quests spawn subsequent RPCs at the front-end. Tail-based
sampling [13] approaches sample traces for storage after the
request finishes execution and a full trace is available. Tail-
based sampling enables decisions informed by trace contents,
but is more complex than head-based sampling.

Unfortunately, the existing trace sampling approaches col-
lect either more or less data than is actually needed to answer
developer queries about traces. On the one hand, even if a
developer is only interested in certain trace properties like
end-to-end request latency, data is still persisted at the granu-
larity of whole traces; this means more information is often

206

https://doi.org/10.1145/3484266.3487393
https://doi.org/10.1145/3484266.3487393

HotNets’21, November 10-12, 2021, Virtual Event, UK Berg et al.

collected than needed for the query. On the other hand, uni-
form head-based sampling may miss anomalous traces, which
are crucial to debugging, and tail-based sampling filters for
specific types of traces, potentially missing traces relevant to
subsequent queries. In either case, the data that is collected
after sampling may not be what is required to answer the
developer’s query accurately.

Here, we take a different approach: tightly coupling trace
data collection and querying. Unlike existing tracing systems,
our output is not a database of traces to be queried. Rather
the database is itself created by the developer’s queries and
captures precisely properties of traces that are of interest
to the developer. We present a query system, Snicket, that
takes a developer’s queries as input, and produces a database
populated by answers to those queries—no more and no less.

Snicket’s input query language is database-style, high-level,
and graph-centered. It allows the developer to work under the
illusion that they can process every single trace in a central-
ized location in a streaming fashion to extract useful insights.
The developer’s query specifies what traces the developer is
interested in (e.g., those with a particular error code), how to
process these traces to extract useful information (e.g., end-
to-end request latency), and how to aggregate multiple traces
to produce useful summary statistics (e.g., mean end-to-end
request latency across multiple traces). To get answers to
the query, Snicket compiles the query to a distributed collec-
tion of microservice extensions, one per microservice. These
extensions run as a bump-in-the-wire before and after the
application logic within the microservice.

Our extension-based approach is enabled by two recent
developments in microservices: (1) the emergence of ser-
vice proxies and (2) support for programmability in these
proxies through WebAssembly (WASM) [25] bytecode exten-
sions. First, diverse microservices share common functions
(e.g., authenticating users, granting those users different privi-
leges, and load balancing across microservice replicas). Over
time, such common functions have been factored out of the
microservice’s application logic and moved into a common
infrastructure software layer known as the service proxy (e.g.,
Envoy and Linkerd [2, 3]). These service proxies effectively
operate as application-layer switches and serve as the data
plane of the inter-microservice network. Second, bytecode
extensions are a new feature of service proxies [1] that al-
lows them to be extended using WASM programs. These
programs can be developed in a language that supports compi-
lation to WASM such as C++ or Rust. Thus, these extensions
augment service proxies with programmability, similar to pro-
grammable switches and network-interface cards. Snicket im-
plements distributed tracing by compiling developer queries
into bytecode extensions running within service proxies.

There are two key challenges in trying to compile queries
on traces into service proxy extensions. First, at any time

while a trace is being created, no extension has a full view of
all microservices or of the trace itself. Yet some computation
must be done at that time in order to integrate data collection
and querying. Allowing the developer the illusion of having
a full view of both, while individual microservices do not, is
challenging. §3.2 discusses how the Snicket compiler handles
this.

Second, it is important to ensure service proxy extensions
do not add untenable overhead (CPU usage, latency, etc). The
extensions run as a bump-in-the-wire, meaning any latency
they incur will have a direct effect on the performance of the
application. Because many microservice applications run in
the cloud, extra CPU usage implies more money spent. §5
discusses potential solutions to reduce this overhead.

In preliminary evaluations of Snicket, we test Snicket on
an open-source microservice benchmark called Online Bou-
tique [7]. We find that Snicket adds modest latency (~17ms)
and CPU overhead (9% increase). We also evaluate Snicket’s
expressiveness and how quickly Snicket’s queries can be up-
dated. Snicket is currently available at https://github.com/
dyn-tracing/snicket_compiler.

2 BACKGROUND AND RELATED WORK
Distributing Tracing. Distributed tracing is the practice of
tracking a user’s request from its entry to its exit. Each RPC,
from a parent to a child in the trace, is captured as a span.
The span may also contain metadata about that RPC such as
the latency of the RPC. Baggage is the data that is propagated
within RPCs across multiple microservices in order to collect
information about the trace. All spans issued as a result of the
same user request can be assembled into a trace: a directed
tree where edges represent caller-callee relationships.

An Ideal System. To contextualize Snicket’s tradeoffs, we
consider an idealized tracing system that records every span,
and sends them to a centralized service to be stored forever.
That system would incur a small but significant overhead
on the application and would have perfect visibility into any
point in the past, but would have prohibitively large storage
costs. All current tracing systems reduce these storage costs
in some way, and in doing so increase the overhead on the
application and/or reduce visibility into data.

Trace Database Systems. Most tracing systems address the
tradeoff by sampling: they store only a fraction of the traces
in a database for later querying. Dapper, Jaeger, and Canopy
employ uniform head-based sampling, which has the advan-
tage of simplicity, but may miss important unusual traces,
thus restricting visibility [4, 11, 23]. Canopy also employs
a form of developer-defined tail-based sampling: based on
developer input, Canopy decides which traces to keep for
later querying [11]. Lightstep uses dynamic sampling, which

207

https://github.com/dyn-tracing/snicket_compiler
https://github.com/dyn-tracing/snicket_compiler

Snicket: Query-Driven Distributed Tracing HotNets’21, November 10-12, 2021, Virtual Event, UK

Front End

Envoy

proxy

Service

applicaton
RPC calls

Legend

User request

WASM

extension

Front End

Ads

Product

Ratings

Request trace

Time

Ads Ratings

Product

Figure 1: An example microservice application. Snicket’s
generated code runs in the Envoy proxy as extensions.

is similar to tail-based sampling, but instead of considering
traces one at a time, it considers all traces from the last one
hour to decide what to store [26]. LightStep’s dynamic tracing
prioritizes unusual traces within the last one hour of traces.

In all these systems, the trace data is first sampled in a
system-specific way and then persisted to long-term storage
where it may be queried. Because querying happens on the
database after sampling, query results may not be represen-
tative of the full stream of traces observed by the microser-
vices. In contrast, Snicket’s query results are accurate because
Snicket logically operates on all traces seen by the application.
However, only the results of Snicket’s query are stored.

Query-Based Systems. Pivot Tracing takes a similar ap-
proach to Snicket by tightly tying collection and querying
together [15]. Pivot Tracing takes a query as input, and com-
piles this query down to dynamic tracepoints throughout a dis-
tributed system that find the query answer. Similar to Snicket,
it stores only the query results, not the traces from which they
are derived. Unlike Snicket, Pivot Tracing does not support
graph-based queries. It also requires more intrusive changes
to the application for deployment, which Snicket sidesteps by
operating at the proxy extension layer.

Recently, there has been some interest in offline graph ana-
lytics of traces [8, 14] because traces are graph structures that
are well suited to graph-processing systems. In these systems,
a trace is treated as a graph and not as a flat collection of
spans; so events from different branches of the same trace are
more easily correlated and processed. Snicket captures simi-
lar graph-based information, while tightly binding together
collection and querying in an online streaming manner.

3 DESIGN
3.1 Input: Query Language
In Snicket, a trace is modeled as a directed tree rooted at the
front-end. Each vertex is a unique visit to a microservice, and
each edge is an RPC. Snicket’s query language syntax is based
on OpenCypher [16] (Figure 2). It allows a microservice

developer to specify both the graph structure and attributes
of traces they are interested in. The input to a query is the
stream of traces created by developer requests, and the output
is the answer to the query, either expressed as a single value
per trace or as the result of an aggregation function over the
per-trace values. The Snicket compiler compiles queries into
a collection of WASM extensions running in the Envoy proxy
(Figure 1). Snicket’s language constructs are described below.

Structural Patterns Using MATCH. MATCH corresponds to a
structural filter, which specifies the structure of the graph to
match on. For example, one could ask for a trace containing a
subtree with a parent and 5 children, as shown in Figure 3.

Attribute Specification Using WHERE. WHERE corresponds to
an attribute filter; it specifies any vertex-level attributes the
vertices referenced in the structural filter might have (e.g.,
vertex “a” must be named “shoppingcart-service”). It also can
specify trace-level attributes (e.g., the latency of the entire
trace or the trace ID). Inherent vertex-level attributes come
directly from Envoy’s interface to WASM. This allows the
language to grow as Envoy expands what it makes available
to WASM. These attributes are either inherent to the vertex’s
microservice (e.g., the microservice’s name) or the RPC re-
sponse sent back by the vertex to its parent (e.g., the size of
the response or a header within the response). Thus, Snicket
developers also have access to whatever application-specific
information is sent through RPC response headers.

Developer-Defined Attributes with function(input). This
construct allows new attributes to be created from inherent
vertex and trace-level attributes. Inherent attributes that are
built into the Envoy service proxy are automatically available
and accessible through dot notation (e.g., vertex.name). A
developer can define a mapping function on these inherent
attributes to create new attributes, like the height of the trace
graph. They are recursively defined: the root’s value will be
considered the attribute for the trace as a whole. For exam-
ple, if a developer wanted the height of a tree, they could
recursively define it to be the maximum height of a vertex’s
children, plus one. Then, the root vertex’s height would also
be the trace’s height.

Query Answers with RETURN. RETURN can either return one
value per trace, (e.g., RETURN latency (trace)) or an ag-
gregation (e.g., RETURN avg (latency (trace))) over at-
tributes across traces. In the first case, the output of the query
is a single value per trace (e.g., a vertex’s name for every
trace that matches the structural and attribute filters). In the
second case, the output of the query is the result of the aggre-
gation function implemented on the returned element (e.g.,
the average latency of multiple traces). The aggregation func-
tions may maintain arbitrary intermediate data to arrive at
their final value. For example, for an average, the aggregation

208

HotNets’21, November 10-12, 2021, Virtual Event, UK Berg et al.

Operator Example Expression in OpenCypher Description
Structural Filter MATCH (a) -> (b) Defines an arbitrary graph structure to match on.
Attribute Filter WHERE a.response.total_size = 500 Filters based on attributes of vertices and traces.

AND height(trace) = 5
Developer-Defined Attributes latency(b) Creates a new, developer-defined attribute for vertices

and traces.
Return RETURN latency(b) Defines what information will be returned to the developer.
Aggregate RETURN average(latency(b)) Specifies an aggregation function that should be

applied to data across traces before returning to the developer.

Figure 2: A table demonstrating each language construct in Snicket, an example corresponding to that construct in
OpenCypher syntax, and a description of the construct.

function implementation keeps a running tally of the total
sum, and the number of instances seen. When a new value
is given to the aggregation function because another trace
has been completed, the aggregation function updates its two
internal values, and divides them to get the value to be placed
in storage. Aggregation functions are developer-defined.

Example Scenario. As an example of Snicket in practice,
consider the scenario where a company is switching from
local to cloud-based machines. In the midst of the transition,
queries are being load balanced across multiple replicas, some
local, and some on the cloud. A developer notices that many
slow requests go through these replicas. A reasonable hypoth-
esis is that there may be some difference between how the
local and cloud replicas are set up. However, that is only one
possible explanation of many. To test that explanation, the
developer formulates the query
MATCH (a)->(b)
WHERE

a.vertex.workload.SERVICE_NAME
== "frontend"

AND a.downstream.address
== local_address

RETURN avg(latency(trace))

In storage, the developer will be able to access a continually
updated average of the latency of traces that went through
the local replicas. If this number is normal, there is likely a
problem on the cloud replicas. If not, then the developer can
change the query’s IP address to the cloud IP, and figure out
if the local replicas are the problem.

3.2 Output: WASM Filters
Snicket’s compiler generates WASM extensions from input
queries. WASM runs in a safe, memory-sandboxed environ-
ment that is isolated from the service proxy [25]. The WASM
environment has a well-defined interface with the Envoy ser-
vice proxies; it can put data into proxy storage, inspect in-
coming and outgoing messages, and learn about the status
and placement of the service proxy. The WASM environment
also has access to Envoy-supplied attributes like the trace ID.

There is one service proxy per microservice. For simplicity
in compiler implementation, the compiler currently generates
the same extension for each proxy except for the storage,
which is a container managed by Snicket to keep the results
of a query. When the developer wants to know the results of a
query, they query the storage container.

3.3 The Snicket Compiler
We now describe how the compiler implements each lan-
guage construct: the attribute filter, structural filter, developer-
defined attributes, return, and aggregation. The compiler cre-
ates as output two extensions: the main extension that runs on
all application microservices, and an aggregation extension
which runs only on the storage container. Both extensions
run in the proxies, so no instrumentation is needed in the
application as long as it uses any service proxy with an exten-
sion mechanism. Our implementation uses the Envoy service
proxy and WASM bytecode extensions.

Attribute Collection. First, as requests pass through various
microservices, relevant Envoy attributes are added to the bag-
gage: the data that is propagated alongside an RPC [18] as it
hops across microservices to complete the user request. This
happens within the main extension. The attributes are acces-
sible through the Envoy interface, and will later determine
whether the trace graph matches the query’s filters.

Attribute and Structural Filtering. As RPC calls are made
in response to incoming user requests, the WASM extension
creates a tree of RPCs in an online fashion, starting at the
leaves. This tree is part of the baggage that is propagated
between microservices. Once a response for an RPC is pro-
cessed, the responding microservice is added to the tree as
a vertex—effectively, a post-order traversal of the trace. As
the tree is created from leaves to root, an isomorphism algo-
rithm [22] is run in a distributed manner at each microservice,
finding matches to the structural and attribute patterns speci-
fied in the query, using only the information collected thus far.
The algorithm executes both structural and attribute filters at
the same time.

209

Snicket: Query-Driven Distributed Tracing HotNets’21, November 10-12, 2021, Virtual Event, UK

Developer-Defined Attributes with function(input). De-
velopers can also create new recursively defined attributes.
The functions defining these attributes execute once for each
vertex: when a response is received from a callee vertex and
the caller vertex becomes part of the trace, then the caller
vertex will define the attribute for itself. Then the attribute
is added to baggage in the same way as inherent attributes.
To create a new attribute, the developer refers to an attribute
using parenthesis notation (e.g., height(trace)) within the
query, and provides the function defining the attribute as part
of the query ingested by the compiler.

Return. In the main extension, once it has been determined
that the attribute and structural filters are satisfied, the exten-
sion sends the result to the storage container. The result is
determined by the return statement and sent to the storage
container as a (Trace ID, value) pair, in order to distinguish
which result came from which trace.

Aggregate. The developer can also define their own func-
tions in the aggregation construct. A developer can create
an aggregation function that takes in anything that can be
put as a RETURN value, and continuously outputs one entry to
be put into the storage container. Thus the developer can do
some summary computation on return values, and store these
summaries, instead of storing per-trace values.

In the example scenario in section 3.1, the input to the ag-
gregation function was latency (trace) and the aggregation
function is avg. The main extension sends (Trace ID, Latency)
pairs to the storage container. But rather than immediately
sending these pairs to storage, the aggregation extension on
the storage container intercepts these pairs and continuously
recomputes a running average of latencies across all pairs
seen so far. This running average is maintained within the
storage container and updated with every new pair.

4 EVALUATING SNICKET
4.1 Language Expressiveness
In Figure 3, we show various examples of Snicket queries.
These queries could include correctness checks, investigation
of anomalous data emitted by the application, or debugging of
erroneous user requests. Two defining features of the Snicket’s
language that are difficult to express with prior systems are:
(1) the ability to match on specific graph structures and (2)
the ability to create new developer-defined attributes without
restarting applications.

4.2 Interactivity
How long does it take until Snicket’s extensions take effect?
The accepted method up until 2020 for replacing a WASM
extension was through uploading the extension to a Kuber-
netes config map [21]. However, Kubernetes also makes this

config map impossible to overwrite [24]. Hence, every time
the contents of the config map (our Snicket extension) are
overwritten, the entire service proxy must be restarted. Al-
though this does not affect application functionality, it is slow.
Recently, a new way to refresh WASM extensions has been
developed [10]. It is still an experimental feature, and has lim-
ited uses. Using the new method, we improved the extension
refresh time from 30–103 seconds to 0.6–0.9 seconds. We
hope that as the feature moves beyond experimental, Snicket
can become more interactive.

4.3 Cost and Performance
We measure the cost and performance of Snicket by two
metrics: (1) the extra compute costs that needs to be paid
to run Snicket alongside an application, and (2) the latency
added by Snicket to user requests.

Application. We use Online Boutique, a microservices appli-
cation of 10 microservices [7]. The only change we made to
the application itself is increasing the requested CPU for each
pod to 601 millicores (1 millicore is one thousandth of a core);
this allows for better performance of the base application.

Cluster Configuration. The cluster is initially given 7 nodes
of machine type “e2-highmem-4” (4vCPU, 32GB memory)
on the Google Cloud Platform. Horizontal autoscaling is en-
abled with a threshold of 40 percent CPU utilization [19], and
all pods are allowed at most 10 replicas, with the exception
of the frontend, which is allowed 30 replicas. None of the
experiments reached the autoscaler limits. We enabled the
default Kubernetes cluster autoscaler [12].

Load Generator. We use a load generator, Locust [9], to cre-
ate load on the application. Locust spawns five users every
second until it reaches 500 users. The load generator was
located in a VM in the same cloud zone as the application.
Each user sends a request, waits a random period between 1
and 3 seconds, then sends another request, and so on. During
this time, both the horizontal and cluster autoscalers are al-
lowed to stabilize to handle the load. Then, we record latency
measurements for 400 seconds and record the extra resources
used to run the application. We measure three cases: (1) the
application alone, (2) the application with a no-op WASM
extension running in each service proxy; this is meant to cap-
ture how much overhead is being added by deploying WASM
extensions at all, (3) the application with extensions generated
by Snicket. We use the query:

MATCH (a)-[]->(b)-[]->(c)
WHERE c.node.metadata.WORKLOAD_NAME='ratings-v1'
RETURN a.node.metadata.WORKLOAD_NAME

Results. Without Snicket running, the load forces the au-
toscaler to create 11 nodes, and the latency has a median of

210

HotNets’21, November 10-12, 2021, Virtual Event, UK Berg et al.

Question Query Response in Storage
Which services are making calls to the cache? MATCH (a) -[]-> (b) A list of all services that called the cache

WHERE b.node.metadata.WORKLOAD_NAME == cache
RETURN a.node.metadata.WORKLOAD_NAME

How long is latency in a 5 child wide graph? MATCH A list of latencies of traces with >= 5 children
(a) -[]-> (b), (a) -[]-> (c), (a) -[]-> (d),
(a) -[]-> (e), (a) -[]-> (f)

RETURN latency(trace)
How many services do requests going through MATCH (a) - []-> (b) -[]-> (c) The median of the height
a, b, and c normally go through? WHERE of the subtree rooted at frontend

a.node.metadata.WORKLOAD_NAME == frontend AND that goes through the product and currency services
b.node.metadata.WORKLOAD_NAME == productservice AND
c.node.metadata.WORKLOAD_NAME == currencyservice

RETURN median(height(a))
Is the header "foo" present in the following trace graph? MATCH (a) -> (b), (a) -> (c), (b) -> (d), (d) -> (e) A list of each trace ID mapped to its foo header

RETURN foo(a)

Figure 3: Examples of Snicket queries.

40 60 80 100 120 140
Latency (ms)

20

40

60

80

100

P
er

ce
nt

Latencies

No extension
Empty extension
Snicket

Figure 4: A CDF of latencies comparing no WASM exten-
sion at all, the no-op WASM extension, and the WASM
extension generated by Snicket.

56 ms (95th percentile: 99 ms). With a no-op extension run-
ning, the autoscaler creates 11 nodes, and the latency has a
median of 59 ms (95th percentile: 110 ms). In other words,
the effect of simply including a WASM extension at all is rela-
tively low. However, an extension generated from an example
query forces the autoscaler to create 12 nodes and increases
median latency to 73 ms (95th percentile: 130 ms).

Comparison to other systems. To contextualize this result,
it is useful to look at other systems. Dapper, without sampling,
has 16 percent latency overhead [23]. Snicket, which pushes
computation to the proxies, has about 30% latency overhead
(56 ms to 73 ms). While this is a significant increase over
Dapper, we believe it is not insurmountably large (§5).

5 FUTURE WORK
Snicket only persists the results of queries on traces in long-
term storage—as opposed to the traces themselves. Hence, the
data persisted by Snicket in long-term storage is tied closely
to the query issued to Snicket. This limits Snicket’s historical
visibility: if a developer wants to reanalyze historic data with
a new query, the developer is limited by the queries used at the
time the data was collected. Ideally, the developer should be

able to query both current and historic traces with the illusion
that all information is always available.

To do so, we are exploring improvements to Snicket that al-
low us to compactly persist all the information from a trace by
exploiting correlations between and across traces to achieve
lossless compression of the traces. We also plan to organize
this data in a manner that facilitates future queries on historic
and current trace data. For this, we will develop indexing
mechanisms to easily access information belonging to a par-
ticular trace, microservice, or time window. These improve-
ments will augment the online querying abilities of Snicket
with the ability to also access historic traces in queries.

We are also looking into optimizations to reduce the 30%
latency overhead of Snicket. Because we have measured a
version of the application with the empty WASM extension,
we know that the overhead to get into and out of the WASM
runtime is relatively low (~3 ms) (Figure 4). Hence, the bulk
of the latency overhead is imposed by Snicket’s autogenerated
extensions, and a promising path for optimization is through
optimizing the code Snicket generates. We are currently in-
vestigating moving more of the extension computation out of
the critical path of requests so that minimal overhead is added
by the WASM extensions. We are also considering optimiza-
tions such as superoptimization [20] of WASM bytecode to
produce bytecode that adds low overhead to RPC processing.

6 CONCLUSION
We have presented Snicket, a system for query-guided dis-
tributed tracing that compiles developer queries on traces into
a distributed collection of extensions. In preliminary experi-
ments, Snicket incurs about 30% latency overhead relative to
an application without tracing. We are continuing to develop
Snicket to reduce its current sources of overhead and improve
its historic visibility into traces.

Acknowledgements. We thank the reviewers for their insight-
ful comments. This research was partially supported by NSF
grants CNS-2152313, CNS-1901510, and CNS-2008048.

211

Snicket: Query-Driven Distributed Tracing HotNets’21, November 10-12, 2021, Virtual Event, UK

REFERENCES
[1] Craig Box, Mandar Jog, Plevyak John, Ryan Louis, Sikora Piotr, Kohavi

Yuval, and Weiss Scott. 2020. Redefining Extensibility in Proxies -
Introducing WebAssembly to Envoy and Istio. https://istio.io/latest/
blog/2020/wasm-announce/. Accessed: 2021-06-25.

[2] Cloud Native Computing Foundation. 2021. Envoy: an open source
edge and service proxy, designed for cloud-native applications. https:
//www.envoyproxy.io/. Accessed: 2021-06-25.

[3] Cloud Native Computing Foundation. 2021. Linkerd: The world’s
lightest, fastest service mesh. https://linkerd.io/. Accessed: 2021-06-
25.

[4] Cloud Native Computing Foundation. 2021. Open Source, End-to-
End Distributed Tracing. https://www.jaegertracing.io/. Accessed:
2021-06-25.

[5] Rodrigo Fonseca, George Porter, Randy H. Katz, and Scott Shenker.
2007. X-Trace: A Pervasive Network Tracing Framework. In USENIX
NSDI.

[6] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon
Jackson, et al. 2019. An Open-Source Benchmark Suite for Microser-
vices and Their Hardware-Software Implications for Cloud & Edge
Systems. In ACM ASPLOS.

[7] Google, Inc. 2021. Online Boutique: a Cloud-Native Microser-
vices Demo Application. https://github.com/GoogleCloudPlatform/
microservices-demo/. Accessed: 2021-06-25.

[8] Xiaofeng Guo, Xin Peng, Hanzhang Wang, Wanxue Li, Huai Jiang, Dan
Ding, Tao Xie, and Liangfei Su. 2020. Graph-Based Trace Analysis for
Microservice Architecture Understanding and Problem Diagnosis. In
ACM ESEC/FSE.

[9] Jonatan Heyman, Joakim Hamrén, Carl Byström, and Hugo Heyman.
2021. Locust: An Open Source Load Testing Tool. https://locust.io/.
Accessed: 2021-06-25.

[10] Istio. 2021. Distributing WebAssembly Modules (Experi-
mental). https://istio.io/latest/docs/ops/configuration/extensibility/
wasm-module-distribution/. Accessed: 2021-06-25.

[11] Jonathan Kaldor, Jonathan Mace, Michał Bejda, Edison Gao, Wiktor
Kuropatwa, Joe O’Neill, Kian Win Ong, Bill Schaller, Pingjia Shan,
Brendan Viscomi, Vinod Vekataraman, Kaushik Veeraraghavan, and
Yee Jiun Song. 2017. Canopy: An End-to-End Performance Tracing
And Analysis System. In ACM SOSP.

[12] Kubernetes. 2021. kubernetes/autoscaler: Autoscaling components
for Kubernetes. https://github.com/kubernetes/autoscaler. Accessed:
2021-10-11.

[13] Pedro Las-Casas, Giorgi Papakerashvili, Vaastav Anand, and Jonathan
Mace. 2019. Sifter: Scalable Sampling for Distributed Traces, without
Feature Engineering. In ACM SOCC.

[14] Pavol Loffay. 2020. Data analytics with Jaeger aka
Traces Tell Us More! https://medium.com/jaegertracing/
data-analytics-with-jaeger-aka-traces-tell-us-more-973669e6f848.
Accessed: 2021-06-25.

[15] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. 2015. Pivot Trac-
ing: Dynamic Causal Monitoring for Distributed Systems. In ACM
SOSP.

[16] Neo4j, Inc. 2019. Cypher Query Language Reference, Version 9.
[17] OpenZipkin. 2021. Zipkin. https://zipkin.io/. Accessed: 2021-06-25.
[18] Austin Parker, Daniel Spoonhower, Jonathan Mace, Ben Sigelman, and

Rebecca Isaacs. 2020. Distributed Tracing In Practice: Instrumenting,
Analyzing, and Debugging. O’Reilly Media.

[19] Google Cloud Platform. 2021. Horizontal Pod autoscaling | Kubernetes
Engine Documentation. https://cloud.google.com/kubernetes-engine/
docs/concepts/horizontalpodautoscaler.

[20] Eric Schkufza, Rahul Sharma, and Alex Aiken. 2012. Stochastic Super-
optimization. Accessed: 2021-10-11.

[21] Toader Sebastian. 2020. How to Write WASM Filters for Envoy and
Deploy It With Istio. https://banzaicloud.com/blog/envoy-wasm-filter/
#create-a-config-map-to-hold-the-wasm-binary. Accessed: 2021-06-
25.

[22] Ron Shamir and Dekel Tsur. 1999. Faster Subtree Isomorphism. Jour-
nal of Algorithms (1999).

[23] Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat
Stephenson, Manoj Plakal, Donald Beaver, Saul Jaspan, and Chandan
Shanbhag. 2010. Dapper, a Large-Scale Distributed Systems Tracing
Infrastructure. Technical Report. Google, Inc.

[24] Joel Smith. 2018. Ensure That the Runtime Mounts RO Volumes
Read-Only by. https://github.com/kubernetes/kubernetes/pull/58720.
Accessed: 2021-06-25.

[25] W3C Working Group. 2021. WebAssembly: a Binary Instruction For-
mat for a Stack-Based Virtual Machine. https://webassembly.org/.
Accessed: 2021-06-25.

[26] Robin Whitmore. 2021. How Lightstep Works. https://docs.lightstep.
com/docs/how-lightstep-works. Accessed: 2021-06-25.

212

https://istio.io/latest/blog/2020/wasm-announce/
https://istio.io/latest/blog/2020/wasm-announce/
https://www.envoyproxy.io/
https://www.envoyproxy.io/
https://linkerd.io/
https://www.jaegertracing.io/
https://github.com/GoogleCloudPlatform/microservices-demo/
https://github.com/GoogleCloudPlatform/microservices-demo/
https://locust.io/
https://istio.io/latest/docs/ops/configuration/extensibility/wasm-module-distribution/
https://istio.io/latest/docs/ops/configuration/extensibility/wasm-module-distribution/
https://github.com/kubernetes/autoscaler
https://medium.com/jaegertracing/data-analytics-with-jaeger-aka-traces-tell-us-more-973669e6f848
https://medium.com/jaegertracing/data-analytics-with-jaeger-aka-traces-tell-us-more-973669e6f848
https://zipkin.io/
https://cloud.google.com/kubernetes-engine/docs/concepts/horizontalpodautoscaler
https://cloud.google.com/kubernetes-engine/docs/concepts/horizontalpodautoscaler
https://banzaicloud.com/blog/envoy-wasm-filter/#create-a-config-map-to-hold-the-wasm-binary
https://banzaicloud.com/blog/envoy-wasm-filter/#create-a-config-map-to-hold-the-wasm-binary
https://github.com/kubernetes/kubernetes/pull/58720
https://webassembly.org/
https://docs.lightstep.com/docs/how-lightstep-works
https://docs.lightstep.com/docs/how-lightstep-works

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Design
	3.1 Input: Query Language
	3.2 Output: WASM Filters
	3.3 The Snicket Compiler

	4 Evaluating Snicket
	4.1 Language Expressiveness
	4.2 Interactivity
	4.3 Cost and Performance

	5 Future Work
	6 Conclusion
	References

